Infinitely many solutions for p-harmonic equation with singular term
نویسندگان
چکیده
منابع مشابه
Infinitely many solutions for a class of $p$-biharmonic equation in $mathbb{R}^N$
Using variational arguments, we prove the existence of infinitely many solutions to a class of $p$-biharmonic equation in $mathbb{R}^N$. The existence of nontrivial solution is established under a new set of hypotheses on the potential $V(x)$ and the weight functions $h_1(x), h_2(x)$.
متن کاملInfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملinfinitely many solutions for a class of $p$-biharmonic equation in $mathbb{r}^n$
using variational arguments, we prove the existence of infinitely many solutions to a class of $p$-biharmonic equation in $mathbb{r}^n$. the existence of nontrivial solution is established under a new set of hypotheses on the potential $v(x)$ and the weight functions $h_1(x), h_2(x)$.
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملInfinitely Many Solutions of Superlinear Elliptic Equation
and Applied Analysis 3 Lemma 6 (see [17]). Assume that |Ω| < ∞, 1 ≤ p, r ≤ ∞, f ∈ C(Ω×R), and |f(x, u)| ≤ c(1+|u|). Then for every
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2013
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2013-9